
CS 250B: Modern Computer Systems

Cache And Memory System

Sang-Woo Jun

Motivation Example:
An Embarrassingly Parallel Workload

❑ A very simple example of counting odd numbers in a large array

int results[THREAD_COUNT];
void worker_thread(…) {

int tid = …;
for (e in myChunk) {

if (e % 2 != 0) results[tid]++;
}

}

Do you see any performance red flags?

Scalability Unimpressive

Scott Meyers, “CPU Caches and Why You Care,” 2013

What is the Y-axis? Most likely normalized latency reciprocal

History of The
Processor/Memory Performance Gap

(and SRAM)

caches introduced
to intel x86
(80386, 80486)

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018

Purpose of Caches

❑ The CPU is (largely) unaware of the underlying memory hierarchy
o The memory abstraction is a single address space

o The memory hierarchy automatically stores data in fast or slow memory,
depending on usage patterns

❑ Multiple levels of “caches” act as interim memory between CPU and
main memory (typically DRAM)
o Processor accesses main memory through the cache hierarchy

o If requested address is already in the cache (address is “cached”, resulting in
“cache hit”), data operations can be fast

o If not, a “cache miss” occurs, and must be handled to return correct data to CPU

Caches Try to Be Transparent

❑ Software is (ideally) written to be oblivious to caches
o Programmer should not have to worry about cache properties

o Correctness isn’t harmed regardless of cache properties

❑ However, the performance impact of cache affinity is quite high!
o Performant software cannot be written in a completely cache-oblivious way

History of The
Processor/Memory Performance Gap

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018

❑ 80386 (1985) :
Last Intel desktop CPU with no on-chip cache
(Optional on-board cache chip though!)

❑ 80486 (1989) : 4 KB on-chip cache

❑ Coffee Lake (2017) :
64 KiB L1 Per core
256 KiB L2 Per core
Up to 2 MiB L3 Per core (Shared)

What is the Y-axis? Most likely normalized latency reciprocal

Why The Gap? SRAM vs. DRAM

❑ SRAM (Static RAM) – Register File, Cache
o Built using transistors, which processor logic is made of

o As fast as the rest of the processor

❑ DRAM (Dynamic RAM)
o Built using capacitors, which can hold charge for a short time

o Controller must periodically read all data and write it back (“Refresh”)
• Hence, “Dynamic” RAM

o Requires fabrication process separate from processor

o Reading data from a capacitor is high-latency
• EE topics involving sense amplifiers, which we won’t get into

Sunami, Hideo. “The Role of the Trench Capacitor in DRAM Innovation.” IEEE Solid-State Circuits Newsletter 13, 2008

Note: Old, “trench capacitor” design

Source: Inductiveload, from commons.wikimedia.org

Multi-Layer Cache Architecture

L3 $

Core

L1 I$ L1 D$

L2 $

Core

L1 I$ L1 D$

L2 $

Cache Level Size Latency (Cycles)

L1 64 KiB < 5

L2 256 KiB < 20

L3 ~ 2 MiB per core < 50

Numbers from modern Xeon processors (Broadwell – Kaby lake)

❑ Even with SRAM there is a size-performance trade-off
o Not because the transistors are any different!

o Cache management logic becomes more complicated with larger sizes

❑ L1 cache accesses can be hidden in the pipeline
o Modern processors have pipeline depth of 14+

o All others take a performance hit

Multi-Layer Cache Architecture

Cache Level Size Latency (Cycles)

L1 64 KiB < 5

L2 256 KiB < 20

L3 ~ 2 MiB per core < 50

Numbers from modern Xeon processors (Broadwell – Kaby lake)

DRAM 100s of GB > 100*

❑ *This is in an ideal scenario
o Actual measurements could be multiple hundreds or thousands of cycles!

❑ DRAM systems are complicated entities themselves
o Latency/Bandwidth of the same module varies immensely by situation…

L3 $

Core

L1 I$ L1 D$

L2 $

Core

L1 I$ L1 D$

L2 $

Cache Line Unit of Management

❑ CPU Caches are managed in units of large “Cache Lines”
o Typically 64 bytes in modern x86 processors

❑ Why not smaller units?
o Word-size management is natural to reason about. Why not this?

Reminder: Direct Mapped Cache Access

❑ For cache with 2W cache lines
o Index into cache with W address bits (the index bits)

o Read out valid bit, tag, and data

o If valid bit == 1 and tag matches upper address bits, cache hit!

Example 8-line direct-mapped cache:

Figure source: MIT 6.004 2019 Fall

Cache management overhead

Larger Cache Lines

❑ Reduce cache management overhead: Store multiple words per data line
o Always fetch entire block (multiple words) from memory

o + Advantage: Reduces size of tag memory

o - Disadvantage: Fewer indices in the cache -> Higher miss rate

Example: 4-block, 16-word direct-mapped cache

Figure source: MIT 6.004 2019 Fall

Larger Cache Lines

❑ Caches are managed in Cache Line granularity
o Typically 64 Bytes for modern CPUs

o 64 Bytes == 16 4-byte integers

o Balance of performance and on-chip SRAM usage

❑ Reading/Writing happens in cache line granularity
o Read one byte not in cache -> Read all 64 bytes from memory

o Write one byte -> Eventually write all 64 bytes to memory

o Inefficient cache access patterns really hurt performance!

Block Size Trade-Offs

❑ Larger block sizes…
o Take advantage of spatial locality (also, DRAM is faster with larger blocks)

o Incur larger miss penalty since it takes longer to transfer the block from memory

o Can increase the average hit time (more logic) and miss ratio (less lines)

❑ AMAT (Average Memory Access Time)
o = HitTime + MissPenalty*MissRatio

Figure source: MIT 6.004 2019 Fall

An Analytical Example:
Two 4 KiB Caches

❑ 4-way set-associative, cache line size of 16 bytes
o Each set == 64 bytes -> 64 sets

o Assuming 32 bit addresses: 22 bit tag + valid + dirty = 24 bits per line

o 768 bytes of overhead per 4 KiB cache

o Total SRAM requirement: 4 KiB + 768 bytes = 4864 bytes

❑ Direct-mapped, cache line size of 4 bytes
o Each line == 4 bytes -> 1024 lines

o Assuming 32 bit addresses: 20 bit tag + valid + dirty = 22 bits per line

o 2816 bytes of overhead per 4 KiB cache

o Total SRAM requirement: 4 KiB + 2816 bytes = 6912 bytes

Memory System Architecture

L3 $

QPI / UPI

DRAM DRAM

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

L3 $

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

Two packages make up a
NUMA (Non-Uniform Memory Access)
Configuration

Memory System Bandwidth Snapshot

QPI / UPI

DRAM DRAM

Core Core

DDR4 2666 MHz
128 GB/s

Ultra Path Interconnect
Unidirectional

20.8 GB/s

Cache Bandwidth Estimate
64 Bytes/Cycle ~= 200 GB/s/Core

Memory/PCIe controller used to be on a separate “North bridge” chip, now integrated on-die
All sorts of things are now on-die! Even network controllers! (Specialization!)

Reminder: Cache Coherency

❑ Cache coherency
o Informally: Read to each address must return the most recent value

o Typically: All writes must be visible at some point, and in proper order

❑ Coherency protocol implemented between each core’s private caches
o MSI, MESI, MESIF, …

o Won’t go into details here

❑ Simply put:
o When a core writes a cache line

o All other instances of that cache line needs to be invalidated

❑ Emphasis on cache line

Cache Prefetching

❑ CPU speculatively prefetches cache lines
o While CPU is working on the loaded 64 bytes, 64 more bytes are being loaded

❑ Hardware prefetcher is usually not very complex/smart
o Sequential prefetching (N lines forward or backwards)

o Strided prefetching

❑ Programmer-provided prefetch hints
o __builtin_prefetch(address, r/w, temporal locality?); for GCC

o Will generate prefetch instructions if available on architecture

Now That’s Out of The Way…

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ Multiplying two NxN matrices (C = A × B)

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * B[k][j]

…

…
×

A B

=

C

2048*2048 on a i5-7400 @ 3 GHz using GCC –O3 = 63.19 seconds

is this fast?

Whole calculation requires 2K * 2K * 2K = 8 Billion floating-point mult + add
At 3 GHz, ~5 seconds just for the math. Over 1000% overhead!

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ Column-major access makes inefficient use of cache lines
o A 64 Byte block is read for each element loaded from B

o 64 bytes read from memory for each 4 useful bytes

❑ Shouldn’t caching fix this? Unused bits should be useful soon!
o 64 bytes x 2048 = 128 KB … Already overflows L1 cache (~32 KB)

…

×

A B

=

C

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * B[k][j]

…

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ One solution: Transpose B to match cache line orientation
o Does transpose add overhead? Not very much as it only scans B once

❑ Drastic improvements!
o Before: 63.19s

o After: 10.39s … 6x improvement!

o But still not quite ~5s

…

×

A BT

=

C

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * Bt[j][k]

` ……

Cache Efficiency Issue #2:
Capacity Considerations

❑ Performance is best when working set fits into cache
o But as shown, even 2048 x 2048 doesn’t fit in cache

o -> 2048 * 2048 * 2048 elements read from memory for matrix B

❑ Solution: Divide and conquer! – Blocked matrix multiply
o For block size 32 × 32 -> 2048 * 2048 * (2048/32) reads

×

A B

A1 B1

B2

C

=
B3

C1

C1 sub-matrix = A1×B1 + A2×B2 + A3×B3 …

A2 A3

Blocked Matrix Multiply Evaluations

Benchmark Elapsed (s) Normalized
Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked Transposed 7.35 8.60

❑ Blocked Transposed bottlenecked by computation
o Peak theoretical FLOPS for my processor running at 3 GHz ~= 3 GFLOPS

o 7.35s for matrix multiplication ~= 2.18 GFLOPS

o Not bad, considering need for branches and other instructions!

o L1 cache access now optimized, but not considers larger caches

❑ This chart will be further extended in the next lectures
o Normalized performance will reach 57 (~1 second elapsed)

Writing Cache Line Friendly Software

❑ (Whenever possible) use data in coarser-granularities
o Each access may load 64 bytes into cache, make use of them!

o e.g., Transposed matrix B in matrix multiply, blocked matrix multiply

❑ Many profilers will consider the CPU “busy” when waiting for cache
o Can’t always trust “CPU utilization: 100%”

Aside:
Object-Oriented Programming And Caches

❑ OOP wants to collocate all data for an entity in a class/struct
o All instance variables are located together in memory

❑ Cache friendly OOP
o All instance variables are accessed whenever an instance is accessed

❑ Cache unfriendly OOP
o Only a small subset of instance variables are accessed per instance access

o e.g., a “for” loop checking the “valid” field of all entities
• 1 byte accessed per cache line read!

❑ Non-OOP solution: Have a separate array for “valid”s
o Is this a desirable solution? Maybe…

Cache Efficiency Issue #3:
False Sharing

❑ Different memory locations, written to by different cores, mapped to
same cache line
o Core 1 performing “results[0]++;”

o Core 2 performing “results[1]++;”

❑ Remember cache coherence
o Every time a cache is written to, all other instances need to be invalidated!

o “results” variable is ping-ponged across cache coherence every time

o Bad when it happens on-chip, terrible over processor interconnect (QPI/UPI)

❑ Simple solution: Store often-written data in local variables

Removing False Sharing

Aside: Non Cache-Related Optimizations:
Loop Unrolling

❑ Increase the amount of work per loop iteration
o Improves the ratio between computation instructions and branch instructions

o Compiler can be instructed to automatically unroll loops

o Increases binary size, because unrolled iterations are now duplicated code

Source: Wikipedia “Loop unrolling”

Aside: Non Cache-Related Optimizations:
Function Inlining

❑ A small function called very often may be bottlenecked by call overhead

❑ Compiler copies the instructions of a function into the caller
o Removes expensive function call overhead (stack management, etc)

o Function can be defined with “inline” flag to hint the compiler
• “inline int foo()”, instead of “int foo()”

❑ Personal anecdote
o Inlining a key (very small) kernel function resulted in a 4x performance boost

Issue #4
Instruction Cache Effects

❑ Instructions are also stored in cache
o L1 cache typically has separate instances for instruction and data caches

• In most x86 architectures, 32 KiB each

• L2 onwards are shared

o Lots of spatial locality, so miss rate is usually very low
• On SPEC, ~2% at L1

o But adversarial examples can still thrash the cache

❑ Instruction cache often has dedicated prefetcher
o Understands concepts of branches and function calls

o Prefetches blocks of instructions without branches

Optimizing Instruction Cache

❑ Instruction cache misses can effect performance
o “Linux was routing packets at ~30Mbps [wired], and wireless at ~20. Windows CE

was crawling at barely 12Mbps wired and 6Mbps wireless.

o […] After we changed the routing algorithm to be more cache-local, we started
doing 35Mbps [wired], and 25Mbps wireless – 20% better than Linux.
– Sergey Solyanik, Microsoft

o [By organizing function calls in a cache-friendly way, we] achieved a 34% reduction
in instruction cache misses and a 5% improvement in overall performance.
-- Mircea Livadariu and Amir Kleen, Freescale

Improving Instruction Cache Locality #1

❑ Careful with loop unrolling
o They reduce branching overhead, but reduces effective I$ size

o When gcc’s –O3 performs slower than –O2, this is usually what’s happening

❑ Careful with function inlining
o Inlining is typically good for very small* functions

o A rarely executed path will just consume cache space if inlined

❑ Move conditionals to front as much as possible
o Long paths of no branches good fit with instruction cache/prefetcher

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Baseline: Sequential algorithm

Livadariu et. al., “Optimizing for instruction caches,” EETimes

If the functions stage_I, stage_II, and stage_III
are sufficiently large, their instructions will
thrash the instruction cache!

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Ordering changed for
cache locality

Livadariu et. al., “Optimizing for instruction caches,” EETimes

Baseline: Sequential algorithm

New array “temp” takes up
space. N could be large!

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Ordering changed for
cache locality

Livadariu et. al., “Optimizing for instruction caches,” EETimes

Baseline: Sequential algorithm Balance to reduce
memory footprint

Questions?

Some Details On DRAM

❑ DRAM cell access latency is very high
o Electrical characteristics of the capacitors and the circuitry to read their state

o To mitigate this, accesses are done at a very coarse granularity
• Might as well spend 10 ns to read 8 KiB, instead of only 4 bytes

❑ DRAM is typically organized into a rectangle
(rows, columns), called a “bank”
o Reduces addressing logic, which is a high

overhead in such dense memory

o Whole row must be read whenever data in new
row is accessed

o As of 2022, typical row size ~8 KB

Some Details On DRAM

❑ Accessed row temporarily stored in DRAM “row buffer”

o Fast when accessing data in same row

o Much slower when accessing small data across rows

❑ The off-chip memory system is also hierarchical
o A DRAM chip consists of multiple banks

o A DRAM card consists of multiple chips

o A memory system (typically) consists of multiple DRAM cards

❑ Row buffer exists for each bank
o Total size of all row buffers in a system is quite large

o Inter-bank parallelism

Exploiting Inter-Bank Parallelism

❑ Ideally, accesses should be grouped within a row

❑ When this is not possible, access to the same bank must be avoided
o Access cannot be serviced until the previous (high-latency) access is done

❑ The processor hardware tries to automatically handle this via address
mapping
o LSB of the address used for column index

o MSB of the address used for row index

o Everything in the middle spread across card/chip/bank/…

Questions?

